Long-Term Impact of Military-Relevant Brain Injury Consortium Chronic Effects of Neurotrauma Consortium

Search LIMBIC CENC WEBSITE CONTENT Login If you do not have a LIMBIC-CENC website account please contact

Neuroimaging of TBI

Bigler ED. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury. Front Syst Neurosci. 2016;10:55. doi:10.3389/fnsys.2016.00055.

Bigler ED. Default mode network, connectivity, traumatic brain injury and post-traumatic amnesia. Brain. 2016;139(12):3054-3057. doi:10.1093/brain/aww277.

Davenport ND, Gullickson JT, Grey SF, Hirsch S, Sponheim SR, Chronic Effects of Neurotrauma Consortium. Longitudinal evaluation of ventricular volume changes associated with mild traumatic brain injury in military service members. Brain Inj. July 2018;32(10):1244-1254. doi:10.1080/02699052.2018.1494854.

Dixon KJ. Pathophysiology of Traumatic Brain Injury. Physical Medicine and Rehabilitation Clinics of North America. 2017;28(2):215-225. doi:10.1016/j.pmr.2016.12.001

Fan Q, Nummenmaa A, Wichtmann B, et al. Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength. Neuroimage. 2018;182:1491-1500. doi:10.1016/j.neuroimage.2018.01.004.

Jurick SM, Bangen KJ, Evangelista ND, Sanderson-Cimino M, Delano-Wood L, Jak AJ. Advanced neuroimaging to quantify myelin in vivo: Application to mild TBI. Brain Inj. 2016;30(12):1452-1457. doi:10.1080/02699052.2016.1219064.

Jurick SM, Hoffman SN, Sorg S, et al. Pilot investigation of a novel white matter imaging technique in Veterans with and without history of mild traumatic brain injury. Brain Injury. 2018;32(10):1255-1264. doi:10.1080/02699052.2018.1493225

Reid MW, Hannemann NP, York GE, et al. Comparing Two Processing Pipelines to Measure Subcortical and Cortical Volumes in Patients with and without Mild Traumatic Brain Injury. J Neuroimaging. 2017;27(4):365-371. doi:10.1111/jon.12431.

Rowland JA, Stapleton-Kotloski JR, Dobbins DL, Rogers E, Godwin DW, Taber KH. Increased Small-World Network Topology Following Deployment-Acquired Traumatic Brain Injury Associated with the Development of Post-Traumatic Stress Disorder. Brain Connect. 2018;8(4):205-211. doi:10.1089/brain.2017.0556.

Stone JR, Wilde EA, Taylor BA, et al. Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury. Brain Inj. 2016;30(12):1458-1468. doi:10.1080/02699052.2016.1222080.

Tate DF, Bolzenius JD, Velez CS, et al. Assessing the Structural and Functional Effects of Neuromodulation Using Magnetic Resonance Imaging. Technology & Innovation. 2016;18(1):39-50. doi:info:doi/10.21300/18.1.2016.39.

Tate DF, Gusman M, Kini J, et al. Susceptibility Weighted Imaging and White Matter Abnormality Findings in Service Members With Persistent Cognitive Symptoms Following Mild Traumatic Brain Injury. Mil Med. 2017;182(3):e1651-e1658. doi:10.7205/MILMED-D-16-00132.

Tate DF, Wade BSC, Velez CS, et al. Volumetric and shape analyses of subcortical structures in United States service members with mild traumatic brain injury. J Neurol. 2016;263(10):2065-2079. doi:10.1007/s00415-016-8236-7.

Tzekov R, Phifer J, Myers A, Mouzon B, Crawford F. Inflammatory changes in optic nerve after closed-head repeated traumatic brain injury: Preliminary study. Brain Inj. 2016;30(12):1428-1435. doi:10.1080/02699052.2016.1219062.

Wilde EA, Bigler ED, Huff T, et al. Quantitative structural neuroimaging of mild traumatic brain injury in the Chronic Effects of Neurotrauma Consortium (CENC): Comparison of volumetric data within and across scanners. Brain Inj. 2016;30(12):1442-1451. doi:10.1080/02699052.2016.1219063.

Wilde EA, Bouix S, Tate DF, et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging Behav. 2015;9(3):367-402. doi:10.1007/s11682-015-9444-y.

Wilde EA, Provenzale JM, Taylor BA, et al. Assessment of quantitative magnetic resonance imaging metrics in the brain through the use of a novel phantom. Brain Injury. 2018;32(10):1265-1275. doi:10.1080/02699052.2018.1494855

The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office. This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. / Created by VCU University Relations

Skip to content